Purpose
Return value
Syntax
=IMCOS(complex_num)
- complex_num - The complex number in the form “x+yi”.
Using the IMCOS function
The Excel IMCOS function returns the cosine of a complex number. For instance, given “1 + 1i” as input, the function returns a complex number equal to the cosine of the input.
=IMCOS(COMPLEX(1,1)) // returns 0.833730025131149-0.988897705762865i
Given real number input, the function behaves like the cosine function. For instance, when π/2 + 0i is provided as input, the function returns -3.49148133884313E-15 (approximately zero). The cosine of π/2 is zero, but due to floating-point precision, it returns a very small number close to zero.
=IMCOS(COMPLEX(PI()/2,0)) // returns approximately 0
Explanation
Mathematically, the cosine of a complex number can be represented using a combination of the standard and hyperbolic trigonometric functions.

If B6 contains a complex number in the form “x+yi”, this is equivalent to the following formula.
=COMPLEX(
COS(IMREAL(B6))*COSH(IMAGINARY(B6)),
-SIN(IMREAL(B6))*SINH(IMAGINARY(B6))
)
Alternatively, the cosine of a complex number can also be represented using the exponential function, where “z=x+yi.”

If B6 contains a complex number in the form “x+yi”, this is equivalent to the following formula.
=IMDIV(
IMSUM(
IMEXP(IMPRODUCT(COMPLEX(0,1), B6)),
IMEXP(IMPRODUCT(COMPLEX(0,-1), B6))
),
2
)
Purpose
Return value
Syntax
=IMCOSH(complex_num)
- complex_num - The number to get the hyperbolic cosine of.
Using the IMCOSH function
The Excel IMCOSH function returns the hyperbolic cosine of a complex number. Given “1+1.5707963267949i” as input, the function returns “-5.4E-15+1.175201i” as output.
=IMCOSH(COMPLEX(1, PI()/2)) // returns -5.4E-15+1.175201i
When the function’s output is plotted over the complex plane, the real output along the real axis traces the shape of the COSH function.
=IMCOSH(COMPLEX(x, 0)) // returns COSH(x)
The imaginary output along the imaginary axis traces the shape of the COS function.
=IMCOSH(COMPLEX(0, y)) // returns COS(y)
Explanation
The function can be defined using the COSH , COS , SINH , and SIN functions.
